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One-Dimensional Diffusion in a Semiinfinite Poisson
Random Force

Petr Chvosta1, 2 and Noe� lle Pottier1

Received January 27, 1999; Final May 12, 1999

We consider the one-dimensional diffusion of a particle on a semiinfinite line
and in a piecewise linear random potential. We first present a new formalism
which yields an analytical expression for the Green function of the Fokker�
Planck equation, valid for any deterministic construction of the potential profile.
The force is then taken to be an asymmetric dichotomic process. Solving the
corresponding energy-dependent stochastic Riccati equation in the space-
asymptotic regime, we give an exact probabilistic description of returns to the
origin. This method allows for a time-asymptotic characterization of the under-
lying dynamical phases. When the two values taken by the dichotomic force are
of different signs, there occur trapping potential wells with a broad distribution
of trapping times, and dynamical phases may appear, depending on the man
force. If both values are negative, the time-asymptotic mean value of the prob-
ability density at the origin is proportional to the absolute value of the mean
force. If they are both positive, traps no longer exist and the dynamics is always
normal. Problems with a shot-noise force and with a Gaussian white-noise force
are solved as appropriate limiting cases.

KEY WORDS: Fluctuation phenomena; random processes; Brownian
motion.

1. INTRODUCTION

The study of dynamical features of diffusion or conductivity in random
environments has been initiated in early eighties(1) and since then intensively

323

0022-4715�99�1000-0323�16.00�0 � 1999 Plenum Publishing Corporation

1 Groupe de Physique des Solides, Laboratoire associe� au CNRS UMR 7588, et aux Univer-
site� s Paris VI et Paris VII, 75251 Paris Cedex 05, France; e-mail: pottier�gps.jussieu.fr.

2 Permanent address: Department of Polymer Physics, Faculty of Mathematics and Physics,
Charles University, 18000 Prague 8, Czech Republic; e-mail: chvosta�kfpy.troja.mff.cuni.cz.



pursued.(3�7) The problem is usually formulated either in a discrete form
(c.f., a comprehensive exposition in ref. 7, Section 6), i.e., by means of the
Pauli Master Equation, (8) assuming the transfer rates to be random
variables, or in a continuous formulation (c.f., a survey of results in ref. 6
and the references therein), i.e., using the Fokker�Planck equation(9�11) and
assuming the so-called drift-function to be a stochastic function in space.
The transport properties are obtained through an average over the random
parameters in the equation of motion.

The resulting dynamics in the time-asymptotic region may exhibit
nonstandard features. For instance, with a Gaussian drift function of non-
zero mean value, a succession of dynamical phases is observed when the
bias is varied. These phases are characterized by different drift and diffusion
behaviours, normal (i.e., with a finite mobility and diffusion coefficient), or
not. The existence of anomalous dynamical phases can be traced back to
the existence of traps with a broad distribution of trapping times.(5)

Most of the standard treatments assume independent random transfer
rates in the master equation, (7, 12, 13) or, correspondingly, a white-noise drift
function in the Fokker�Plank equation.(14�17) In the latter case, the
problem can be referred to as the diffusion process in a Brownian environ-
ment. Assuming the continuous formulation and the positionally independ-
ent random properties of the medium, the problem has been treated both
in physical (c.f., for example, ref. 16) and in mathematical (e.g., ref. 6)
literature. Several modifications of the continuous model have been
analyzed (differing by the boundary conditions, with or without the global
bias) using various methods and levels of rigorousness. Nevertheless, as
pointed out, e.g., in ref. 18, a more realistic description should take into
account the possibility of spatial correlations in the local transport
parameters.(19�23)

Let us consider a continuous medium and imagine first that the par-
ticle diffuses through an array of randomly positioned minima with ran-
domly distributed depths. The simplest choice for a space-correlated bias
yielding this scenario is that of a dichotomic noise, (11) with realizations
alternately assuming two possible values of different signs. The potential
then displays a succession of linear segments of random lengths and of
alternately positive and negative slopes. One can well figure out that, in
such a potential, the minima represent traps, some of them being deep
traps with large trapping times. This case shares some similarities with the
Gaussian-white-noise one, and should lead to results of the same type for
the particle drift and diffusion properties (i.e., the existence of anomalous
dynamical phases for certain values of the parameters of the model). But,
interestingly enough, the choice of a dichotomic noise also allows to treat

324 Chvosta and Pottier



the case of quenched random force taking alternately two values of the
same sign. Since clearly the notion of deep traps��and even simply of
traps��makes no more sense in this case, one does not expect the existence
of anomalous dynamical phases.

More specifically, in the present paper, we assume that the lengths of
the above described constant-force segments are independent and exponen-
tially distributed, in which case the quenched random force is a Markovian
Poisson process in space. We consider a particle diffusion on a semi-infinite
line, i.e., we impose a reflecting boundary condition at the origin. These
two hypotheses allow for exact analytical calculation and for the discussion
of a rich variety of physically different situations.

The paper is organized as follows. In Section 2, our analysis begins
with the Laplace transformation of the Fokker�Planck equation. One thus
gets a differential equation in space, depending parametrically on the
energy, as pictured by the Laplace variable z. the corresponding Green
function in the presence of an arbitrary deterministic piecewise constant
bias is derived. In Section 3, we introduce quenched disorder with general
piecewise constant realizations. The localization probability of the particle
at its (sharp) initial position satisfies a Riccati stochastic differential equa-
tion with a multiplicative noise (in space). Specifying further the noise to
be the Markovian Poisson one, we are then able to derive a one-formula
based (Eq. (50)) parallel analysis of the disorder average of the localization
probability of the particle at the origin on the one hand and the trapping
time or the time-asymptotic average velocity on the other hand. In Sec-
tion 4, we analyze various physical situations, according to the sign of the
mean bias and to the presence or to the absence of traps. Finally, Section 5
contains our conclusions.

Generally speaking, the new results of our paper are the following.
First, our procedure is exact for any fixed value of the Laplace variable z.
On the one hand, this enables, at least in principle, the analysis of the dis-
order-averaged probability density at the origin for any time. On the other
hand, we can carry out the small-z analysis and derive the exact time-
asymptotic formulae for this quantity in various physical regimes. Another
specific feature of our work is the application of reflecting boundary condi-
tions at the origin. Thus, clearly, in contrast to the equivalent problem on
an infinite line, the situation with a positive or a negative mean bias are not
equivalent. Indeed, with a negative mean bias the particle is in some sense
stuck to the boundary at the origin or pushed back towards it, while with
a positive mean bias it escapes towards infinity, the modus of its time-
asymptotic motion being controlled by a parameter describing the typical
depth of the potential traps.
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2. DIFFUSION IN A DETERMINISTIC FORCE

2.1. Homogeneous Force

Let us consider an overdamped Brownian particle acted upon by a
standard white-noise Langevin force 1 (t~ ) and by a position-dependent poten-
tial force F(x~ ). Its dynamics is described by the viscous Langevin equation

'
d

dt~
x~ (t~ )=F[x~ (t~ )]+1 (t~ ) (1)

with ' being the viscosity. The correlation function of the Langevin force
is equal to 2D0'2$(t~ &t~ $), where D0=kBT�' is the diffusion constant in the
absence of the potential force. The corresponding Fokker�Planck equation
for the Green function P� (x~ , y~ ; t~ ) reads

�
�t~

P� (x~ , y~ ; t~ )=&
�

�x~ _&D0

�
�x~

P� (x~ , y~ ; t~ )+
F(x~ )

'
P� (x~ , y~ ; t~ )& (2)

The bracketed expression represents the probability current J� (x~ , y~ ; t~ ). We
assume the initial condition P� (x~ , y~ ; 0)=$(x~ & y~ ) and the boundary condi-
tions J� (x~ 0 , y~ ; t)=0, J� (x~ 1 , y~ ; t~ )=0. Consequently, the boundaries at x~ 0

and x~ 1 are reflecting and the probability density is always normalized to
unity.

In order to make the following calculation more transparent, we intro-
duce dimensionless variables. The potential force will be written in the form
F(x~ )=F0 f (x~ ). The dimensionless coordinate is x=x~ F0 �'D0 , and the
dimensionless time t=t~ F 2

0 �'2D0 . We thus get from Eq. (2):

�
�t

P(x, y; t)=&
�

�x
J(x, y; t) (3)

J(x, y; t)=&
�

�x
P(x, y; t)+ f (x) P(x, y; t) (4)

The original density and current are connected with their dimensionless coun-
terparts via P� (x~ , y~ ; t~ )=F0P(x, y; t)�'D and J� (x~ , y~ ; t~ )=F 2

0J(x, y; t)�'2D.
Let us assume for the moment a position-independent force: f (x)= f

for x # [x0 , x1]. Performing the Laplace transformation, the Fokker�
Planck equation (2) yields a nonhomogeneous differential equation with
constant coefficients,

_ d 2

dx2& f
d

dx
+z& P(x, y; z)=&$(x& y) (5)
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We are using the same symbol for a given function a(t) and for its Laplace
transform a(z)=��

0 dt exp(&zt) a(t), the Laplace original (transform)
being always indicated by writing the variable t(z). Combining any par-
ticular solution of the nonhomogeneous equation with the general solution
of the homogeneous equation, we have P(x, y; z)=PN(x, y: z)+PH(x; z),
with

PN(x, y; z)=
1

2:(z)
[3( y&x) e(x& y) :+(z)+3(x& y) e&(x& y) :&(z)] (6)

PH(x; z)=c+(z) ex:+(z)+c&(z) e&x:&(z) (7)

where :(z)=- z+ f 2�4, :\(z)=- z+ f 2�4\ f�2, and 3(x) is the
Heaviside function. Having acquired the general solution for the density,
we calculate the general expression for the probability current. In the last
step, the two functions c\(z) are fixed from the reflecting-boundary condi-
tions J(x0 , y; z)=0, J(x1 , y; z)=0.

The whole procedure is well known. However, in view of the following
calculation, it is convenient to present the final result in a matrix form. We
introduce a two-dimensional space with the basis [ |1, 0) , |0, 1)] and we
express the pair density-current as two coordinates of a single state ket:
P(x, y; z)=(1, 0 | G(x, y; z)) and J(x, y; z)=(0, 1 | G(x, y; z)). Adopting
this convention, the result of the present simple example reads

|G(x, y; z)) =W(x1&x; z) |1, 0) 1 ( y; z)&3( y&x) W( y&x; z) |0, 1)
(8)

Here we have introduced the abbreviation

1 ( y; z)=
(0, 1| W( y&x0 ; z) |0, 1)
(0, 1| W(x1&x0 ; z) |1, 0)

(9)

and the matrix

W(x; z)=\
:&(z) ex:&(z)+:+(z) e&x:+(z)

2:(z)

z
ex:&(z)&e&x:+(z)

2:(z)

ex:&(z)&e&x:+(z)

2:(z)
:+(z) ex:&(z)+:&(z) e&x:+(z)

2:(z) +
(10)
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Notice that, at given z, W(x; z) satisfies the ``dynamical equation''

d
dx

W(x; z)=H(z) W(x; z), H(z)=\& f
z

1
0+ (11)

with the position x playing here the role of time. Eq. (10) gives W(0; z)=I
(unity matrix), i.e., we have formally W(x; z)=exp[xH(z)].

Equation (8) yields the complete picture of the resulting motion (i.e.,
we can compute P(x, y; z), J(x, y; z) and these functions can be inverted
into the time domain(26)). For instance, taking x0=0, x1=l, y � 0+, and
x=0, the probability density at the origin emerges as the ratio of two
matrix elements:

P(0, 0; z)=
(1, 0| W(l; z) |1, 0)
(0, 1| W(l; z) |1, 0)

=
1
z

:&(z) el:&(z)+:+(z) e&l:+(z)

el:&(z)&e&l:+(z)
(12)

Moreover, for the semi-infinite line, we have lim l � � P(0, 0; z)=:&(z)�z.
In this case, we get following picture. having f<0, the force pushes the
diffusing particle against the boundary. In this case, the time-asymptotic
value of the probability density at the origin is | f | the asymptotic value of
the mean particle position is | f |&1, i.e., the time-asymptotic velocity is zero.
On the other hand, when f>0, liml � � P(0, 0; t) decreases exponentially to
zero and the mean position increases linearly with time, the velocity being
just f. Finally, in the marginal case f =0, P(0, 0; t) behaves asymptotically
as 1�- ?t , the mean position increases as - ?t , and the asymptotic velocity
is zero.

2.2. Piecewise Constant Force

Let the original interval [x0 , xN] be divided into N segments
[xk&1 , xk], k=1,..., N, with lengths lk=xk&xk&1 . Let fk be the constant
force in the k th subinterval. We assume that the particle has been originally
placed in the M th segment, i.e., P(x, y; 0)=$(x& y) with y # [xM&1 , xM].
The boundary conditions at x0 and xN are again reflecting.

The procedure for solving the Fokker�Planck equation will be parallel
to that in the above simple example. The general solution in the M th
segment consists of two parts. First, the particular solution of the non-
homogeneous Eq. (5) (with fM instead of f ) will assume the form (6) with
:M(z)=- z+ f 2

M�4 instead of :(z) and :\
M(z)=:M(z)\ fM �2 instead of

:\(z). Second, the general solution of the homogeneous equation in the
M th subinterval assumes the form (7), again with :\

M(z) instead of :\(z),

328 Chvosta and Pottier



and with two arbitrary functions c\
M(z) instead of c\(z). The general solu-

tion in the k th subinterval, k{M, is also of the form (7) with the substitu-
tions :\(z) � :\

k (z) and c\(z) � c\
k (z). Altogether, the whole general

solution depends on the 2N functions c\
k (z), k=1,..., N. these are fixed

from the requirements J(x0 , y; z)=J(xN , y; z)=0 at the reflecting boun-
daries and from the continuity conditions for the probability density and
for the probability current at the intermediate points x1 , x2 ,..., xN&1 .

The final result can be again expressed in matrix form. We designate
the ``evolution operator'' for the k th segment as Wk(x; z)��it is defined by
the expression (10) with the substitutions :(z) � :k(z) and :\(z) � :\

k (z).
Further, we introduce the notations

Wm, n =Wm(lm ; z) Wm+1(lm1
; z) } } } Wn(ln ; z), (13)

1M, N( y; z)=
(0, 1| W1, M&1WM( y&xM&1 ; z) |0, 1)

(0, 1| W1, N |1, 0)
(14)

Finally, let |Gk(x, y; z)) be the value of the state ket in the k th segment,
that is |G(x, y; z)) =|Gk(x, y; z)) for x # [xk&1 , xk]. The final result of
the present Section then reads

|G1(x, y; z)) =W1(x1&x; z) W2, N |1, 0) 1M, N( y; z)

&W1(x1&x; z) W2, M&1WM( y&xM&1 ; z) |0, 1) (15)

b

|GM&1(x, y; z)) =WM&1(xM&1&x; z)WM, N |1, 0) 1M, N( y; z)

&WM&1(xM&1&x; z) WM( y&xM&1 ; z) |0, 1) (16)

|GM(x, y; z)) =WM(xM&x; z) WM+1, N |0, 1) 1M, N( y; z)

&3( y&x) WM( y&x; z) |0, 1) (17)

|GM+1(x, y; z)) =WM+1(xM+1&x; z) WM+2, N |1, 0) 1M, N( y; z) (18)

b

|GN(x, y; z)) =WN(xN&x; z) |1, 0) 1M, N( y; z) (19)

It is easy to check that the boundary conditions and the continuity con-
ditions are actually satisfied and that the resulting probability density is
properly normalized.

Having at hand the complete Green function for the given composi-
tion of the segments, we now proceed to the analysis of some consequences.
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First, let x0=0, xN=l, y � 0+, and x=0. The probability density at the
origin assumes a particularly simple form:

P(0, 0; z)=
(1, 0| W1(l1 ; z) W2(l2 ; z) } } } WN(lN ; z) |1, 0)
(0, 1| W1(l1 ; z) W2(l2 ; z) } } } WN(lN ; z) |1, 0)

(20)

In Section 3, this expression will be taken as a starting point for the dis-
ordered-medium calculation.

Second, consider the value of the probability density at point y in the
M th segment, i.e., at the initial position of the particle. Taking x0=0 and
x � y+, P(x, x; z) equals the ratio

(0, 1| W1, M&1WM(x&xM&1 ; z) |0, 1)(1, 0| WM(xM&x; z) WM+1, N |1, 0)
(0, 1| W1(l1 ; z) } } } WM(lM ; z) } } } WN(lN ; z) |1, 0)

(21)

Due to the exponential nature of the operator WM(lM ; z) in the denominator,
we can split it as a product of two factors, WM(x&xM&1 ; z) WM(xM&x; z).
Further, we can insert in between the resolution of the unity operator,
which yields

P(x, x; z)=_(0, 1| Wk(xk&x; z) Wk+1(lk+1 ; z) } } } WN(lN ; z) |1, 0)
(1, 0| Wk(xk&x; z) Wk+1(lk+1 ; z) } } } WN(lN ; z) |1, 0)

+
(0, 1| W1(l1 ; z) } } } Wk&1(lk&1 ; z) Wk(x&xk&1 ; z) |1, 0)
(0, 1| W1(l1 ; z) } } } Wk&1(lk&1 ; z) Wk(x&xk&1 ; z) |0, 1)&

&1

(22)

For any finite x, the small-z limit of the second term turns out to be zero.
Thus the quantity limz � 0+ P(x, x; z) is equal to the small-z limit of the
density at origin for a new medium of the total length l&x. The new inter-
val consists of N&k+1 segments of the lengths xk&x, lk+1 ,..., lN , the con-
stant forces in these segments being fk ,..., fN . This simple result will be of
considerable value in the analysis of the disordered medium. Namely,
imagine that the particle is launched from the point x. The total time T (x)
spent in the interval (x, x+dx) is equal to

T (x) dx=_|
�

0
P(x, x; t) dt& dx= lim

z � 0+
P(x, x; z) dx (23)
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i.e., T (x) can be related to the probability density at the origin for the above
mentioned new interval. Of course, T (x) can only be finite for an interval
of infinite length. However, even for the semi-infinite interval, T (x) is finite
only if the particle can escape to infinity, that is, if the force in the last segment
(which is necessarily of infinite length) is non-negative.

Third, let us consider the thermally-averaged position of the particle
M(l; t) (we take again x0=0, xN=l, and y � 0+). Introducing the Laplace
transform M(l; z)=� l

0 dx xP(x, 0; z) and integrating the Laplace transform
of the Fokker�Planck equation, we have

M(l; z)=_x |
x

0
dx$ P(x$, 0; z)&

l

0

&|
l

0
dx |

x

0
dx$ P(x$, 0; z)

=
l
z

&|
l

0
dx

1
z

[1&J(x, 0; z)]=
1
z |

l

0
J(x, 0; z) dx (24)

Thereupon, taking the projection of the above Green function, we can
write

M(l; z)=
1
z
_�N

k=1 �xk
xk&1

(0, 1| Wk(xk&x; z) Wk+1(lk+1 ; z)
} } } WN(lN ; z) |0, 1) dx &

(0, 1| W1(l1 ; z) W2(l2 ; z) } } } WN(lN ; z) |0, 1)
(25)

In the next section, this result will allow to connect the thermally-averaged
position M(l; z) with the Laplace transform P(0, 0; z) of the probability
density at the origin. We now turn to the detailed analysis of this latter
quantity in the disordered medium.

3. PIECEWISE CONSTANT RANDOM FORCE

The preceding calculation in valid for any deterministic piecewise con-
stant force. Such a force can be conceived as a member of a randomly con-
structed family of functions, that is, as a realization of a stochastic process.
An arbitrary fixed realization is associated with a given weight. Conse-
quently, the same weight is attributed to the probability density at the
origin P(0, 0; z) for this realization. We are thus guided to the question:
what is the probability density of the random variable P(0, 0; z)? This
section presents the exact answer for a semi-infinite medium and a special
type of the stochastic process to be fully specified in Subsection 3.3. In the
first and the second Subsection, our reasoning is valid for any piecewise
constant random force.
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Fig. 1. Typical realization of the Markovian Poisson dichotomic force taking two values of
opposite signs, f&<0< f+ with f+=2 | f& |. The slope of the corresponding potential is
alternately positive and negative: there are traps in this case.

3.1. Stochastic Riccati Equation

Let us consider the following system of two stochastic differential
equations,

d
d*

|�(*; z))=H(*; z) |�(*; z)) , H(*; z)=\&,(*)
z

1
0+ (26)

where ,(*), *�0, is a piecewise constant random process. Let us introduce
the projections R(*; z)=(1, 0 | �(*; z)) , S(*; z)=(0, 1 | �(*; z)) , and take
the initial conditions R(0; z)=1, S(0; z)=0. The system (26) can be solved
for any specific realization of ,(*). Actually, consider the composition
described at the beginning of Subsection 2.2 (c.f. also Fig. 1), and let the
``time'' * equal l&x. We have ,(*; z)= fN for * # [0, lN]. If * increases, the
evolution is controlled by the operator WN(*; z). At the end of this inter-
val, the state WN(lN ; z) |1, 0) represents the initial condition for the semi-
group evolution in the succeeding interval * # [lN , lN&1+lN]. This evolu-
tion is governed by the operator WN&1(*; z). Repeating this reasoning, the
solution at the end of the N th interval, i.e., at the point *=1, reads
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R(l; z)=(1, 0| W1(l1 ; z) W2(l2 ; z) } } } WN(lN ; z) |1, 0) (27)

S(l; z)=(0, 1| W1(l1 ; z) W2(l2 ; z) } } } WN(lN ; z) |1, 0) (28)

By comparing with Eq. (20), it can be seen that the random variable
P(0, 0; z) is identical to the ratio R(l; z)�S(l; z). From now on, the random
variable P(0, 0; z) will be designated as P(*; z). We introduce its probabil-
ity density ?( p, *; z)=($[ p&P(*; z)]) , where the symbol ( } } } ) denotes
the average over the quenched disorder. Taking the projections of Eq. (26),
the random variables R(*; z) and S(*; z) obey the system of stochastic dif-
ferential equations

d
d*

R(*; z)=&,(*) R(*; z)+S(*; z),
d

d*
S(*; z)=zR(*; z) (29)

with * representing the total length of the interval accessible to the diffusing
particle. Finally, on comparing the *-derivative of the product R(*; z)=
P(*; z) S(*; z) with the first Eq. (29) and on dividing by S(*; z), we obtain
the stochastic Riccati differential equation obeyed by P(*; z):

d
d*

P(*; z)=&zP2(*; z)&,(*) P(*; z)+1, P(0; z)=+� (30)

For purely operational reasons, we introduce the random variable
Q(*; z)=zP(*; z). One gets from Eq. (30):

d
d*

Q(*; z)=&Q2(*; z)&,(*) Q(*; z)+z, Q(0; z)=+� (31)

The density }(q, *; z)=($[q&Q(*; z)]) is related with the density ?( p, *; z)
by ?( p, *; z)=z}(zp, *; z). Regarding the relation

lim
t � �

P(0, 0; t)= lim
z � 0+

zP(*; z)= lim
z � 0+

Q(*; z) (32)

the small-z limit of the density }(q, *; z) describes the time-asymptotic
properties of the random variable P(0, 0; t).

3.2. Mean Trapping Time and Mean Velocity

Let us now return to the reasoning associated with Eqs. (21)�(23).
We shall call the variable T (x)=limz � 0+ P(x, x; z) the trapping time.3
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Presently, the density P(x, x; z) and hence also the trapping time are ran-
dom variables. Performing the small-z limit in Eq. (22), we have connected
the trapping time with the particle-position probability density at the origin
of an interval shorter than the original one. However, if the original inter-
val is of infinite length, the same is true for the new one. Since the
quenched random force is described by a stationary process, the probability
density at the beginning of the new interval is stochastically equivalent with
the density at the beginning of the original one. Summing up, one has:

T (x)= lim
z � 0+

lim
* � �

P(x, x; z)= lim
z � 0+

lim
* � �

P(*; z) (33)

The trapping time is position-independent, i.e., T (x)=T, its mean value
being

{ =def lim
z � 0+

lim
* � �

(P(*; z)) = lim
z � 0+

lim
* � �

1
z

(Q(*; z)) (34)

In the preceding section, we have introduced the Laplace transform of
the thermally-averaged position, M(*; z). Presently, it is again a random
variable. Using the definition of S(*, z), the probability current in Eq. (25)
can be rewritten as J(x, 0; z)=S(*&x; z)�S(*; z), which yields

M(*; z)=
1
z |

*

0
dx J(x, 0; z)=

1
z

�*
0 dx S(x; z)

S(*; z)
(35)

where we have used the stationarity of the quenched random force. The
derivative of this equation yields

d
d*

M(*; z)=
1
z

&zP(*; z) M(*; z), M(0; z)=0 (36)

Finally, introducing the Laplace transform of the thermally-averaged
velocity, V(*; z)=zM(*; z), the time-asymptotic velocity for the semi-
infinite line is given by

lim
t � �

lim
* � �

V(*; t)= lim
z � 0+

lim
* � �

z |
*

0
d*$ exp _&z |

*

*$
d*" P(*"; z)& (37)

where we have used limt � � lim* � � V(*; t)=limz � 0+ lim* � � zV(*; z).
The last formula can be rewritten in the form which reveals the well
known(5, 15) self-averaging property of the time-asymptotic velocity, when it
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is nonzero. Indeed, assuming that the limit limz � 0+ lim* � �(P(*; z)) is
finite, we can write

lim
t � �

lim
* � �

V(*; t)= lim
z � 0+

lim
* � �

z |
*

0
d*$ exp[&z(*&*$)(P(*; z))]

_exp {&z |
*

*$
d*" [P(*"; z)&(P(*; z))]= (38)

Due to the above assumption, if * � �, the integral in the second exponent
represents a random variable which is finite (for high enough *", the typical
trajectory of P(*", z) swings around the mean value (P(*; z)) ). There-
upon, for small z, the second exponential tends to unity and the remaining
integration yields the reciprocal value of the non-random number (34).
Thus, when the mean trapping time { is finite, the asymptotic velocity is a
self-averaging quantity equal to {&1.4 If the mean trapping time diverges,
the asymptotic velocity vanishes. In this latter case, the disorder-averaged
time-asymptotic mean position either tends to a constant (for a negative
mean force),or increases slower than linearly.

For the sake of completeness, the second thermally-averaged moment
N(*; z)=�*

0 dx x2P(x, 0; z) can be also connected to the probability density
at the origin. Actually, first, the Fokker�Planck equation implies N(*; z)=
(2�z) �*

0 dx xJ(x, 0; z). Thereupon, on deriving this expression, we get

d
d*

N(*; z)=2M(*; z)&zP(*; z) N(*; z), N(0; z)=0 (39)

Summing up, the first and the second thermally-averaged moments obey a
system of stochastic differential equations (36), (39), with P(*; z) playing
the role of the ``input'' noise.

3.3. Dichotomic Random Force

Let the forces in the individual segments assume alternately just two
values, F\=F0 f\ . We shall always take f&< f+ ; the equality would
imply a position-independent constant force. Let the lengths of the con-
stant-force segments be independent random variables. The generic prob-
ability density for the (dimensionless) lengths of the constant-force
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segments will be taken of the form \\(*)=n\ exp(&*n\), where 1�n\

denotes the mean length of the segments with the force f\ . Due to this
assumption, the resulting four-parameter stochastic process ,(*) is
Markovian and it usually referred to as the asymmetric dichotomic noise.(11)

We shall always work with a stationary dichotomic noise. We can set

+ =def (,(*)) =
f& n++ f+n&

n&+n+

, (,(*) ,(*$)) =
_
*c

exp \&
|*&*$|

*c +
(40)

where we have introduced the intensity _ =def n& n+( f+& f&)2�(n&+n+)3,
and the correlation length *c =def (n&+n+)&1. The statistical properties of
the stationary noise are invariant with respect to the inversion * � &* and
to the translation * � *&l.

Let us now focus on Eq. (31). It is convenient to associate with the
variable Q(*; z) an overdamped motion of a hypothetical particle. While
the ``time'' * increases, this particle moves alternately under the influence of
the ``forces''

K\(q; z)=&q2& f\q+z=&[q&q\(z)][q&q$\(z)] (41)

where we have introduced the four quantities

q\(z)=- z+ f 2
\ �4& f\ �2, q$\(z)=&- z+ f 2

\ �4& f\ �2 (42)

Notice the ordering q$+(z)<q$&(z)<0<q+(z)<q&(z), valid for any real
positive z and for any values of the parameters f&< f+ . The corresponding
``potentials'' U\(q; z)=&� K\(q; z) dq display minima at q\(z) and max-
ima at q$\(z). Starting from its initial ``position'' at infinity, the particle
always slides either towards q&(z) or towards q+(z)<q&(z). For any fixed
* the particle can only be found between the coordinate valid for the poten-
tial U+(q; z) and that valid for U&(q; z). Accordingly, for an arbitrary
nonzero z, the probability density }(q, *; z) vanishes outside the finite
interval

_q+(z) e *q+(z)&q$+(z) e*q$+(z)

e*q+(z)&e *q$+(z) ,
q&(z) e*q&(z)&q$&(z) e*q$&(z)

e*q&(z)&e*q$&(z) & (43)

and it displays two $ function contributions at the edges of this support,
their weights being n� exp(&*n\)�(n&+n+). This singular part describes
an exponentially decreasing probability of having just one segment in the
whole interval of length *. Obviously, in the limit * � �, the support is
simply [q+(z), q&(z)] and the singular part is missing.
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In order to solve Eq. (31) for the dichotomic noise in question we
follow the standard steps as described in ref. 11. First, we introduce the
joint densities

}\(q, *; z) dq=Prob[Q(*; z) # (q, q+dq) and ,(*)= f\] (44)

One has }(q, *; z)=}&(q, *; z)+}+(q, *; z). These densities obey the
coupled partial differential equations

�
�* _

}&(q, *; z)
}+(q, *; z)&=&

�
�q _

K&(q; z) }&(q, *; z)
K+(q; z) }+(q, *; z)&

&_ n&

&n&

&n+

n+ &_}&(q, *; z)
}+(q, *; z)& (45)

We are looking for the stationary solution }\(q; z)=lim* � � }\(q, *; z).5

Hence we remove the *-derivative on the l.h.s. of Eq. (45). Introducing the
two new functions

!(q; z)=
K&(q; z) K+(q; z)

n&K+(q; z)+n+K&(q; z)
[n&}&(q; z)&n+}+(q; z)] (46)

'(q; z)=K&(q; z) }&(q; z)+K+(q; z) }+(q; z) (47)

and carrying out the corresponding substitution in Eq. (45), we arrive at
two independent equations:

d
dq

'(q; z)=0,
1

!(q; z)
d

dq
!(q; z)=&\ n&

K&(q; z)
+

n+

K+(q; z)+ (48)

Hence the function '(q; z) is simply a constant, which in fact is equal to
zero. Actually, Eq. (41) yields K\[q\(z); z]=0, and conservation of prob-
ability entails }\[q�(z); z]=0. The second differential equation yields

!(q; z)=
1

C(z) _
q&(z)&q
q&q$&(z)&

&&(z)

_q&q+(z)
q&q$+(z)&

&+(z)

,

&\(z)=
n\

- 4z+ f 2
\

(49)
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where C(z) is a normalization constant. Finally, inverting the transforma-
tion [(46), (47)], we get }\(q; z)=�!(q; z)�K\(q; z) and the stationary
density }(q; z)=lim* � � }(q, *; z) reads

}(q; z)=
1

C(z) {
1

[q&(z)&q][q&q$&(z)]
+

1
[q&q+(z)][q&q$+(z)]=

__q&(z)&q
q&q$&(z)&

&&(z)

_q&q+(z)
q&q$+(z)&

&+(z)
3[q; q+(z), q&(z)] (50)

where we have denoted6 3(q; x, y)=3(q&x) 3( y&q). In the final step,
the constant C(z) is fixed from the condition �q&(z)

q+(z) }(q; z) dq=1, that is

C(z)=
1

(- 4z+,2(*))

[q&(z)&q+(z)]&&(z)+&+(z)

[q+(z)&q$&(z)]&&(z) [q&(z)&q$+(z)]&+(z)

_B[&&(z), &&(z)] F[&&(z), &+(z), &&(z)+&+(z)+1; &u(z)]

(51)

Here B(x, y)=1 (x) 1 ( y)�1 (x+ y) denotes the Euler beta function,
F(a, b, c; x) is the Gauss hypergeometric function, (26) and we have used
the abbreviation

u(z)=
[q&(z)&q+(z)][q$+(z)&q$+(z)]
[q$+(z)&q$+(z)][q$+(z)&q$&(z)]

(52)

Equations (50) and (51) represent the main result of the present section.
The corresponding moments can be obtained by the usual integration: the
k th stationary moment lim* � �(Qk(*; z)) is simply given by the ratio
Ik(z)�I0(z), where we have designated

Ik(z) =
def |

q&(z)

q+(z)
dq qk { 1

[q&(z)&q][q&q$&(z)]
+

1
[q&q+(z)][q&q$+(z)]=

__q&(z)&q
q&q$&(z)&

&&(z)

_q&q+(z)
q&q$+(z)&

&+(z)

(53)

In the general case, these integrals can be expressed as a linear combination
of the Appell functions F1

(28) (the hypergeometric functions of two vari-
ables(26, 27)). In the special case, I0(z) equals to the integration constant (51).
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4. DISCUSSION

Our general four-parameter description of the dichotomic force
provides a rich spectrum of special regimes, which can be analyzed using
Eq. (50), where, as indicated above, the probability density }(q; z) stands
for lim* � � }(q, *; z). In the same way, we shall use the simpler designa-
tions Q(z) ?( p; z) and P(z) for the stationary values Q(*; z), ?( p, *; z) and
P(*; z).

4.1. Both Forces Are Negative ( f&< f+<0)

The mean force + in Eq. (40) is negative and the potential consists of
segments with a positive slope (c.f. Fig. 2). For any arbitrary realization of
the quenched noise, the particle cannot escape to infinity��it can be found
with probability one in a finite region. Intuitively, one expects a nonzero
time-asymptotic mean value of the probability density at the origin, and a
finite time-asymptotic value of the thermally-averaged mean position.

Consider the small-z limit of the probability density (50). First, one
has limz � 0+ &\(z)=n\�| f\ |. Second, the small-z limits of the expressions

Fig. 2. Typical realization of the Markovian Poisson dichotomic force taking two values of
the negative signs, f&< f+<0 with | f&|=2 | f+|. The slope of the corresponding potential
is always positive. There are not raps in this case, the particle being stuck towards the reflect-
ing boundary at the origin.
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q\(z) are | f\ |, whereas q$\(z) behave as &z�| f\ |. Analyzing the expres-
sions in (43), the support of the probability density limz � 0+ }(q; z) is the
interval [ | f+ |, | f& |]. Finally, we have u(z) � 0, i.e., the hypergeometric
function in Eq. (51) tends to unity. On collecting these observations, one
gets

lim
z � 0+

}( p; z)=|+|
| f& |n+�| f+| | f+ | n&�| f&|

( | f& |&q) (n&�| f&|)&1 (q&| f+ | ) (n+�| f+|)&1

_B&1 \ n&

| f& |
,

n+

| f+ |+
_

(| f& |&q)(n&�| f&|)&1 (q&| f+ | (n+�| f+|)&1)
q(n&�| f&|)+(n+�| f+|)+1

_3(q; | f+ |, | f& | ) (54)

The corresponding moments limz � 0+(Qk(z)) are all finite and they can
be computed analytically by direct integration. In particular for k=1
one gets limz � 0+(Q(z)) =|+|. Thus the time-asymptotic mean value
limt � �(P(0, 0; t)) in the semi-infinite line is seen to be equal to the
absolute value of the mean force, |+|. Note that this result cannot be
obtained from the solution of the corresponding free-diffusion model on an
infinite line (i.e., without the reflecting boundary condition at the origin).
The higher moments are not so simply related to the properties of the
random force. Further, in the present case, the mean trapping time (34) is
infinite and the time-asymptotic velocity vanishes. The particle is in some
sense stuck to the origin. If f&< f+=0, a slightly more complicated
calculation reveals the same general conclusions.

4.2. Forces Are of Different Signs ( f&<0< f+)

The potential forms a system of traps (c.f. Fig. 1). The traps can only
be efficient if the ration n+ � f+ is comparable with the ratio n& �| f& |.
Otherwise, they are typically ``shallow'' and they do not represent suf-
ficiently effective obstacles for the particle motion. The ``trap-permeability''
parameter, as defined by % =def n& �| f& |&n+ �f+ , will play an important
role in the following discussion.(21, 22) In fact, it is proportional to the mean
force: %=+(n&+n+)�| f& | f+ . Having fixed the forces f\ , the mean force
+ can be either positive or negative, depending on the parameters n\ , the
value +=0 separating two regions with essentially different time-asymp-
totic dynamics.
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Let us consider again the small-z limit of Eq. (50). The quantities
q&(z) and q$&(z) behave as in the preceding subsection. Presently, however,
one has q+(z)tz�f+ and q$+(z) � & f+ . Thereupon, the small-z limit of
the support (43) is now the interval [0, | f& |]. Further, the variable (52)
diverges and one has to use the analytic continuation of the hyper-
geometric function in Eq. (51).

4.2.1. Negative Mean Force (+<0). In the small-z limit the
normalization constant C(z) alone converges to a finite number and we can
safely carry out this limit separately in C(z) and in the rest of the expres-
sion (50). The result reads

lim
z � 0+

}(q; z)=
n+

n&+n+

f n&�| f&|
+ ( | f& |+ f+) (n+�f+)&(n&�| f&|)+1

| f& | (n+�f+)&1

_
1

B \ n&

| f& |
,

n+

f+

&
n&

| f& |+
_q(n+�f+)&(n&�| f&|)&1( | f& |&q(n&�| f&|)&1)

_(q+ f+)&(n+� f+)&1 3(q; 0, | f& | ) (55)

All the moments of this limiting density exist and can be computed analyti-
cally. Let us just quote the result for k: 1=limz � 0+(Q(z))=|+|, i.e., we
have again limt � �(P(0, 0; t))=|+|. The mean trapping time diverges and
the time-asymptotic velocity vanishes. As compared to the previous subsec-
tion, the presence of traps does not modify the modus of the asymptotic
dynamics.

4.2.2. Zero Mean Force (+=0). In this Sinai-like case, the
small-z analysis of the general expression for the first moment (P(z))
together with the Tauber theorem for the inverse Laplace transforma-
tion(29) yield the logarithmic decay

(P(0, 0; t)) r
t � � | f& | f+

n&+n+

1
log t

(56)

4.2.3. Positive Mean Force (+>0). In the small-z limit, the
normalization constant C(z) diverges as z&%, %>0. The limiting density
(50) is concentrated at one point: limz � 0+ }(q; z)=$(q). All the moments
Qk(z) are self-averaging quantities, their (non-random) limiting value being
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zero. On the other hand, the density limz � 0+ ?( p; z) is a well behaved
function, concentrated on the interval [ f &1

+ , +�[. Actually, if we first
handle the substitution ?( p; z)=z}(zp; z) in Eq. (50) and afterwards exer-
cise the small-z limit, we get

lim
z � 0+

?( p; z)=
n&

n&+n+

( | f& |+ f+) (n&�| f&|)&(n+� f+)+1

| f& | f (n&�| f&|)&(n+� f+)
+

_B&1 \n+

f+

,
n&

| f& |
&

n+

f++
_p \p+

1
| f& |+

&(n&�| f&|)&1

\p&
1
f++

(n+�f+)&1

_3 \ p;
1
f+

, +�+ (57)

Here we come to an essential conclusion(22): the moment limz � 0+(Pk(z))
is only finite if k<%. Specifically, for % # ]0, 1[, the limit limz � 0+(P(z)) is
infinite, i.e., the mean trapping time is also infinite and the time-asymptotic
velocity is zero. More precisely, using again the Tauber theorem, we get

(P(0, 0; t)) r
t � � n&

n+(n&+n+)

1 2 \ n&

| f& |+
1 2 \n+

f++ 1 (%)

f 2(1&%)
+ ( | f& |+ f+)2%

| f& |2%

1
t%

(58)

If %�1, the first moment limz � 0+(P(z)) is finite and its reciprocal gives
the (self-averaging) time-asymptotic velocity:

lim
t � �

lim
* � �

V(*; t)=(%&1)
(n&+n+) | f& | f+

(n&+n+)2&n& | f& |+n+ f+

(59)

However, if % # [1, 2], the small-z limit of the second moment
limz � 0+(P2(z)) is infinite. This can be shown to imply the vanishing of
the (static) diffusion constant for the disorder averaged dynamics (this
quantity is not discussed here).

4.3. Both Forces Are Positive (0< f&< f+)

In this case, the slope of the potential is always negative: the particle
just slides towards infinity. The small-z limit of the stationary probability
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density for the random variable P(z) again follows from Eqs. (50) and (51).
The normalization constant alone tends to zero and one must operate with
the whole expression (50). The result reads

lim
z � 0+

?( p; z)=+ \ f& f+

f+& f& +
(n&� f&)+(n+�f+)&1

B&1 \n&

f&

,
n+

f++
_p \ 1

f&

& p+
(n&� f&)&1

\p&
1
f++

(n+�f+)&1

_3 \p;
1
f+

,
1
f&+ (60)

Obviously enough, all the moments of this density exist. For k=1, we get

{= lim
z � 0+

(P(z))=
n& f&+n+ f++(n&+n+)2

(n&+n+)(n& f++n+ f&+ f& f+)
(61)

As expected, the mean trapping time is finite. The time-asymptotic velocity
is self-averaging and equals the reciprocal of the above expression.(21, 22)

There is no anomalous dynamical phase in this case.

4.4. White Shot-Noise Limit

Originally, the dichotomic quenched force has been described by four
parameters, n\�0 and f\ . Another convenient equivalent four-parameter
set is the mean force +, the intensity _, the correlation length *c=
1�(n&+n+), already introduced in Eq. (40), and the ``non-Gaussianity''
parameter(24) #=| f+& f& |�(n&+n+), the meaning of which being
explained below. It is well known(11, 24) that an appropriate limit of the
dichotomic noise yields the Poisson white shot-noise. Actually, consider the
parametrization

f&=&
_&#+

#
, f+=!, n&=

_
#2 , n+=

!
#

(62)

If we increase the parameter !, the force f+ increases and the mean length
of the segments with the force f+ tends to zero. In the limit ! � �, the
parameters +, _, and # keep their values, whereas the correlation length *c

tends to zero. The limiting form of the correlation function in Eq. (40)
is 2_$(*&*$). After the indicated limit, the quenched force displays an
array of randomly positioned $-impulses on the constant background
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Fig. 3. Typical realization of the white shot-noise random force and of the corresponding
potential. The lengths of the vertical segments of the potential are independent, exponentially
distributed random variables, their mean value being #. There are traps in this case.

&(_&#+)�# (c.f. Fig. 3). The mean (dimensionless) distance between the
$-impulses is #2�_, their weights being randomly distributed with the prob-
ability density #&1 exp(&w�#) 3(w). Thus the parameter # represents the
mean weight of the impulses. On the whole, in the present subsection, the
random potential is described by the three parameters _�0, #�0, and +.
The potential wells only exist if f&<0, i.e., if #+<_; Fig. 3 illustrates the
typical form of the potential in this case.

Let us now carry out this limiting process in Eqs. (50) and (51). We
get q+(z) � 0 and &+(z) � 1�#, i.e., the support of the density }(q; z) comes
to be the interval [0, q&(z)]. The density itself reads

}(q; z)=
q&(z)&&(z)1�#

[q&(z)&q$&(z)]&&(z)+1 B&1[&&(z), 1+1�#]

_F&1 _&&(z), &&(z)+1, &&(z)+
1
#

;
q&(z)

q&(z)&q$&(z)&
_q1�#[q&(z)&q]&&(z)&1 [q&q$&(z)]&&&(z)&1 3[q; 0, q&(z)]

(63)
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We are again interested in the small-z limit of this probability density and
in its moments. We shall restrict the discussion to the physically interesting
case with traps, i.e., #+<_. In this case, the variable of the Gauss hyper-
geometric function in Eq. (51) tends to 1& and we use an appropriate
analytic-continuation formula.(26)

If +<0, the time-asymptotic value of the averaged density at origin is
again limt � �(P(0, 0; t)) =|+|. If +=0 is zero, we observe the logarithmic
decay

(P(0, 0; t)) r
t � � _

1
log t

(64)

If +>0, the time-asymptotics is controlled by the trap-permeability
parameter %. Presently, it can be written as %=+�(_&+#). For % # ]0, 1],
the trapping time diverges and the asymptotic velocity vanishes. More
precisely, we have

(P(0, 0; t)) r
t � �

1 2 \%+
1
#+

1 2 \1
#+ 1 (%)

_#2%

(_&+#)2%

1
t% (65)

Finally, if %�1, the first moment limz � # +(P(z)) is finite and its recipro-
cal gives the (self-averaging) time-asymptotic velocity:

lim
t � �

lim
* � �

V(*; t)=(%&1)
_&+#
1+#

(66)

4.5. Gaussian-White-Noise Limit

As already mentioned in the Introduction, the diffusion process in a
Brownian environment represent an archetypal formulation which has been
deeply pursued in the literature. On the mathematical side, (30�35) the
emphasis has been given, e.g., to the precise formulation of the pertinent
limit theorems, (6) to the phenomenon of localization by random cen-
tering, (34) and to the extremal properties of the particle's trajectories. In the
present subsection, some of these results will be recovered as a particular
case of our formulation.

In fact, it is well known(11, 24) that an appropriate limit of the
dichotomic noise yields the Gaussian white noise. However, the Gaussian
white noise can be also obtained as a limit of the white shot-noise which
has been introduced in the preceding subsection: one simply sets # � 0+.
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This means that the mean weight of the $-impulses of the force tends to
zero, and simultaneously their density n&=_�#2 increases, such that the
product (density)_(mean weight)2 remains constant. The bias + and the
intensity _ keep their values and the correlation function in Eq. (40) is
again 2_$(*&*$). The quenched force displays an infinitely dense array of
$ peaks in both directions, their weights being infinitely small. Notice that
this limit can only be achieved if we start with the dichotomic random
force taking two values of different signs.

The Gaussian-white-noise results simply emerge after we carry out the
small-# limit in Eqs. (63). Particularly, we have q&(z) � �, i.e., the support
of the probability density }(q; z) becomes the infinite interval [0, +�[.
The density itself reads

}(q; z)=
1
2

z%�2

K% \2
_

- z +
1

q%+1 exp _&
1
_ \q+

z
q+& 3(q; 0, +�) (67)

in accordance with the result found in refs. 5 and 16. Presently, the trapper-
meability parameter simply measures the ratio between the mean force and
its intensity: %=+�_.

The formula (67) is valid for arbitrary values of the parameters _ and
+. If +<0, we have again limt � �(P(0, 0; t))=|+|. In the Sinai case, i.e.,
for +=0, the asymptotic behaviour is again given by Eq. (64). The corres-
ponding result for the infinite line without the reflecting boundary condi-
tion at the origin is [16] (P(0, 0; t)) r

t � � _�(log t)2. Thus the presence of
the boundary slows down the decay of the disorder-averaged probability
density at the origin. Having +>0 and % # ]0, 1[, the asymptotic velocity
vanishes and the averaged probability density at the origin decreases
algebraically as

(P(0, 0; t)) r
t � � _1&2%

1 (%)
1
t% (68)

For example, %=1�2 yields the exact solution (P(0, 0; t)) =1�- ?t , valid
for any time. Finally, when %�1, the time-asymptotic disorder-averaged
mean position linearly increases, the self-averaging velocity being (%&1) _.
The damping of the disorder-averaged probability density at the origin can
be exemplified by taking %=3�2: we then get (P(z)) =2�(_+2 - z ), that
is

(P(0, 0; t))=
1

- ?t
&

_
2

exp \1
4

_2t+ erfc \1
2

_ - t + r
t � � 2

_2
- ?

1
t3�2 (69)
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This asymptotic behaviour should be contrasted with the exponential
damping which takes place in the presence of a positive homogeneous
deterministic force, as found in Subsection 2.1.

5. CONCLUSION

In the present paper, a transfer-matrix-like method for solving diffu-
sion problems in a piecewise linear random potential has been introduced.
The formulae for the Green function derived in the second section can be
easily adapted to numerical simulation of the diffusive motion in any
potential of the mentioned type. For example, the force can be assumed to
be a semi-Markovian or a non-Markovian variant of the dichotomic
noise, (36, 37) it can exhibit jumps of random magnitudes (kangaroo pro-
cess(29)), etc. For any such process, our analysis is valid up to Subsec-
tion 3.3. Our subsequent choice of a Markovian dichotomic process has
been dictated by a relatively direct possibility to get the asymptotic solu-
tion of the stochastic equations (30), (31).

Let us summarize the preceding discussion. The dynamical effects of
the quenched disorder have been evinced by examining the varying
stochastic features of a single random variable, namely, the probability
density of the particle's occurrence at the origin. Having a negative mean
bias, the time-asymptotic and disorder-averaged value of this quantity is
proportional to the absolute value of the mean force. In the Sinai-like case,
i.e., for the vanishing mean bias, we have given the exact asymptotic for-
mula describing the decay of this quantity. The decay is slower than in the
corresponding model without the reflecting boundary at the origin. Finally,
having a positive mean bias, the particle escapes towards infinity, with a
finite velocity or not, depending on the value of the trap-permeability
parameter. The existence of deep traps with a long trapping time is crucial
for the existence of anomalous dynamical phases.

In the present work, we have chosen to formulate the diffusion
problem in the presence of reflecting boundary conditions. After a slight
modification, the method can be adapted to other types of boundary condi-
tions. For instance, taking a fixed probability density at two boundaries,
our method can be used to the analysis of the stationary-flux distribution
in the one-dimensional random medium.(21)

We have not aimed at the exhaustive description of the particle
dynamics. Instead, we have concentrated on features which can be directly
related to the probability density at the origin. The detailed description of
the ``noise'' P(*; z) allows, at least in principle, for an investigation of other
aspects, such as the time-asymptotic thermally-averaged first moment of
the particle's position. Another example would be the disorder-averaged
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diffusion coefficient. Its analysis requires the calculation of the second ther-
mally-averaged moment of the particle's position on the one hand, and the
higher-order (generally non-self-averaging) terms in the small-z expansion
of the first moment on the other hand. We have shown that the thermally-
averaged moments obey a system of stochastic differential equations with
P(*; z) playing the role of the ``input'' noise. The probabilistic description
of the moments will be reported elsewhere.

Finally, let us mention a possible correspondence between the space-
time continuous model and its discrete analogue. The Fokker�Planck
equation with the Gaussian-white-noise quenched disorder (as discussed in
Subsection 4.5) coheres with the space-discrete Master Equation including
mutually independent and identically distributed random transition rates.(1)

The parallel discussion of these two models has been given in ref. 16.
However, the space-discrete counterpart of the continuous model with the
Poisson random force (as particularized in Subsection 3.3) is considerably
more involved: one assumes the Master equation with the spatially
correlated random rates, e.g., the random rates themselves form a station-
ary Markov chain. This model does not seem to be adequately treated in
the literature, yet (c.f., however, the discussion of the spatial correlations
within the simpler frame of the directed random walk in refs. 19 and 20).

Summing up, the paper presents an approximation-free study of the
diffusive dynamics in an one-dimensional Markovian Poisson random
potential. It provides a firm basis for the intuitive understanding of diffu-
sion in more involved circumstances.
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